Search results for "sparse model"

showing 7 items of 7 documents

Induced smoothing in LASSO regression

The thesis is being carried out with the National research Council at the Institute of Biomedicine and Molecular Immunology "Alberto Monroy" of Palermo, where I am a fellow, under the supervision of MD Stefania La Grutta. Our research unit is focused on clinical research in allergic respiratory problems in children. In particular, we are interested in to assess the determinants of impaired lung function in a sample of outpatient asthmatic children aged between 5 and 17 years enrolled from 2011 to 2017. Our dataset is composed by n = 529 children and several covariates regarding host and environmental factors. This thesis focuses on hypothesis testing in lasso regression, when one is interes…

LASSO regression; Induced smoothing; Sandwich formula; Sparse models; Variable selection.Sparse modelVariable selection.Induced smoothingSandwich formulaSettore SECS-S/01 - StatisticaLASSO regression
researchProduct

Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models

2013

Summary Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the …

Statistics and ProbabilityGeneralized linear modelSparse modelMathematical optimizationGeneralized linear modelsVariable selectionPath following algorithmEquiangular polygonGeneralized linear modelLASSODANTZIG SELECTORsymbols.namesakeExponential familyLasso (statistics)Sparse modelsDifferential geometryInformation geometryCOORDINATE DESCENTFisher informationERRORMathematicsLeast-angle regressionLeast angle regressionGeneralized degrees of freedomsymbolsSHRINKAGEStatistics Probability and UncertaintySimple linear regressionInformation geometrySettore SECS-S/01 - StatisticaAlgorithmCovariance penalty theory
researchProduct

Estimation of sparse generalized linear models: the dglars package

2013

dglars is a public available R package that implements the method proposed in Augugliaro, Mineo and Wit (2013) developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method (LARS). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve; specifically a predictor-corrector algorithm and a cyclic coordinate descent algorithm.

generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selectionSettore SECS-S/01 - Statistica
researchProduct

The Induced Smoothed lasso: A practical framework for hypothesis testing in high dimensional regression.

2020

This paper focuses on hypothesis testing in lasso regression, when one is interested in judging statistical significance for the regression coefficients in the regression equation involving a lot of covariates. To get reliable p-values, we propose a new lasso-type estimator relying on the idea of induced smoothing which allows to obtain appropriate covariance matrix and Wald statistic relatively easily. Some simulation experiments reveal that our approach exhibits good performance when contrasted with the recent inferential tools in the lasso framework. Two real data analyses are presented to illustrate the proposed framework in practice.

Statistics and ProbabilityStatistics::TheoryInduced smoothingEpidemiologyComputer scienceFeature selectionWald test01 natural sciencesasthma researchStatistics::Machine Learning010104 statistics & probability03 medical and health sciencesHealth Information ManagementLasso (statistics)Linear regressionsparse modelsStatistics::MethodologyComputer Simulation0101 mathematicssandwich formula030304 developmental biologyStatistical hypothesis testing0303 health sciencesCovariance matrixlung functionRegression analysisStatistics::Computationsparse modelResearch DesignAlgorithmSmoothingvariable selectionStatistical methods in medical research
researchProduct

dglars: An R Package to Estimate Sparse Generalized Linear Models

2014

dglars is a publicly available R package that implements the method proposed in Augugliaro, Mineo, and Wit (2013), developed to study the sparse structure of a generalized linear model. This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method proposed in Efron, Hastie, Johnstone, and Tibshirani (2004). The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve: a predictor-corrector algorithm, proposed in Augugliaro et al. (2013), and a cyclic coordinate descent algorithm, proposed in Augugliaro, Mineo, and Wit (2012). The latter algorithm, as shown here, is significan…

Statistics and ProbabilityGeneralized linear modelEXPRESSIONMathematical optimizationTISSUESFortrancyclic coordinate descent algorithmdgLARSFeature selectionDANTZIG SELECTORpredictor-corrector algorithmLIKELIHOODLEAST ANGLE REGRESSIONsparse modelsDifferential (infinitesimal)differential geometrylcsh:Statisticslcsh:HA1-4737computer.programming_languageMathematicsLeast-angle regressionExtension (predicate logic)Expression (computer science)generalized linear modelsBREAST-CANCER RISKVARIABLE SELECTIONDifferential geometrydifferential geometry generalized linear models dgLARS predictor-corrector algorithm cyclic coordinate descent algorithm sparse models variable selection.MARKERSHRINKAGEStatistics Probability and UncertaintyHAPLOTYPESSettore SECS-S/01 - StatisticacomputerAlgorithmSoftware
researchProduct

Using the dglars Package to Estimate a Sparse Generalized Linear Model

2015

dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, called dgLARS, is based on a differential geometrical extension of the least angle regression method. The core of the dglars package consists of two algorithms implemented in Fortran 90 to efficiently compute the solution curve. dglars is a publicly available R package that implements the method proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed to study the sparse structure of a generalized linear model (GLM). This method, call…

Generalized linear modelFortranLeast-angle regressionGeneralized linear array modelFeature selectionSparse approximationdgLARS generalized linear models sparse models variable selectionGeneralized linear mixed modelSettore SECS-S/01 - StatisticacomputerGeneralized estimating equationAlgorithmMathematicscomputer.programming_language
researchProduct

Differential geometric LARS via cyclic coordinate descent method

2012

We address the problem of how to compute the coefficient path implicitly defined by the differential geometric LARS (dgLARS) method in a high-dimensional setting. Although the geometrical theory developed to define the dgLARS method does not need of the definition of a penalty function, we show that it is possible to develop a cyclic coordinate descent algorithm to compute the solution curve in a high-dimensional setting. Simulation studies show that the proposed algorithm is significantly faster than the prediction-corrector algorithm originally developed to compute the dgLARS solution curve.

Cyclic coordinate descent method Differential geometry dgLARS Generalized linear models LARS Sparse models Variable selectionSettore SECS-S/01 - Statistica
researchProduct